The Smoke Suppression Effect of Copper Oxideon the Epoxy Resin/Intumescent Flame Retardant/Titanate Couple Agent System

نویسندگان

  • Zhiping Wu
  • Meiqin Chen
  • Haikuan Yang
  • Yunchu Hu
چکیده

Fire disaster is the major factor to endanger the public and environmental safety. People lost their life during fire disaster mainly be attributed to the dense smoke and toxic gas under combustion, which hinder the escape of people and the rescue of firefighters under fire disaster. The smoke suppression effect of several transitional metals oxide on the epoxy resin treated with intumescent flame retardant and titanate couple agent (EP/IFR/Titanate) system have been investigated. The results showed manganese dioxide has great effect on reducing the smoke density rate (SDR) of EP/IFR/Titanate system; however it has little effect to reduce the maximum smoke density (MSD) of EP/IFR/Titanate system. Copper oxide can decrease the maximum smoke density (MSD) and smoke density rate of EP/IFR/Titanate system substantially. The MSD and SDR of EP/IFR/Titanate system can reduce 20.3% and 39.1% respectively when 2% of copper oxide is introduced. Keywords—copper oxide, epoxy resin, intumescent flame retardant, smoke suppression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epoxy-based Flame Retardant Nanocomposite Coatings: Comparison Between Functions of Expandable Graphite and Halloysite Nanotubes

Whis work presents a study on the flammability of epoxy coatings containing two types of nano-scale fillers as potential flame retardants: expandable graphite (EG) and halloysite nanotubes (HNTs). Both nanocomposites are prepared by incorporation of the same amount of nanofiller into the epoxy resin for the sake of comparison. Fire retardant nanocomposite coatings are cured through a two-stage ...

متن کامل

Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent

It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenyl)methyl)-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA) is synthesized and characterized. When it is used as a co-curing agent of 4,4'-methylenedianiline (DD...

متن کامل

Flame Retardance and Smoke Suppression of CFA/APP/LDHs/EVA Composite

A new intumescent flame-retardants (IFR) system including the charing-foaming agent (CFA), ammonium polyphosphate (APP) and modified-layered double hydroxides (LDHs) with different transition metals (Ni, Co, Cu) were used in the ethylene vinyl acetate (EVA) matrix. Both the limiting oxygen index and the vertical burning tests indicate that the CFA/APP system and LDHs have significant synergisti...

متن کامل

Key Role of Reinforcing Structures in the Flame Retardant Performance of Self-Reinforced Polypropylene Composites

The flame retardant synergism between highly stretched polymer fibres and intumescent flame retardant systems was investigated in self-reinforced polypropylene composites. It was found that the structure of reinforcement, such as degree of molecular orientation, fibre alignment and weave type, has a particular effect on the fire performance of the intumescent system. As little as 7.2 wt % addit...

متن کامل

مروری بر انواع رزین و الیاف تقویت‌کننده در عایق‌های کامپوزیتی سوخت جامد

Thermal insulation materials protects internal surface of the motor casing in contact with the hot produced gases, extreme turbulence flow and high pressure due to combustion propellant. Insulation Materials in the rocket motor covers the inner surface of the motor casing and protect the body against the damage caused by extreme and short-term heat, intense turbulent flow and high pressure. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012